Logarithms

1. Basic Logarithmic Formula

A logarithm tells you the power to which a number (base) must be raised to get another number. The general formula is:

 $\log_b(x)=y$

This equation reads as "log base b of x is y," which means that b raised to the power of y equals x.

For example:

```
\log_{10}(100)=2
since 10^2=100
```

2. Types of Logarithms

- **Common Logarithm**: Base 10, written as log(x) or $log_{10}(x)$.
- Natural Logarithm: Base e (Euler's number, approximately 2.718), written as ln(x) or log_e(x).

3. Calculating Logarithms by Hand

For simple logarithms with base 10 or base e, you can use a calculator. However, here are some ways to estimate or calculate them:

For Common Base 10 Logarithms

- 1. **Perfect Powers of 10**: Use known values. For example:
 - $Log_{10}(10)=1$ because $10^1=10$.
 - \circ log₁₀(1000)=3 because 10³=1000.
- 2. Estimating Non-Perfect Powers: For values like $log_{10}(50)$, you can use a calculator, or estimate by knowing it's between $log_{10}(10)=1$ and $log_{10}(100)=2$.

For Natural Logarithms

Use a calculator for precise values, but remember:

- $\ln(e)=1$ because $e^1=e$.
- $\ln(1)=0$ because $e^0=1$.

4. Using Logarithmic Rules

To simplify calculations, apply these rules:

- **Product Rule**: $\log_b (x \cdot y) = \log_b (x) + \log_b (y)$
- Quotient Rule: $\log_b (x/y) = \log_b((x) \log_b (y))$
- **Power Rule**: $\log_b (x^n) = n \cdot \log_b (x)$
- Change of Base Formula: For any bases a and b,

$$\log_b(x) = \log_a(x) / \log_a(b)$$