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1 Radial Solution of Hydrogen Atom Problem

The Schrödinger equation for the hydrogen atom problem can be expressed as

∇2ψ +
2µ

~2

(
E +

ze2

r

)
ψ = 0,

where µ = m1m2
m1+m2

is the reduced mass of the nucleus and the electron of the hydrogen

atom. In spherical polar coordinate, the above equation can be written as
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ψ = 0.

This equation can be solved using separation of variable technique. Writing

ψ = ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ),

the above equation can be expressed as
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= 0. (1)

Multiplying on both sides by sin2 θ, we have
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+
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(
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r2 sin2 θ = − 1
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.

This equation can be correct only if both sides of it are equal to the same constant, since

they are functions of different variables. Thus, the differential equation for φ can be

written as

− 1

Φ

d2Φ

dφ2
= m2

` , (2)
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so that
d2Φ

dφ2
+m2

`Φ = 0 ⇒ Φ(φ) = Aeim`φ.

Since Φ(φ) = Φ(φ+ 2π) (same meridian plane), we have Aeim`φ = Aeim`(φ+2π), which can

only happen when m` is 0 or a positive or negative integer (±1,±2,±3, · · · ). The constant

m` is known as magnetic quantum number of the hydrogen atom.

Now, Eq. (1) can be written as
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Rearranging r and θ dependent parts, we have
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Thus, we have again arrived at an equation where different variables appear on each side,

requiring that both sides be equal to the same constant. This constant we shall call `(`+1).

The equation for the functions R and Θ are, therefore, given by
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m2
`

sin2 θ
− 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= `(`+ 1). (4)

The solution of the differential equation for the radial part R(r) of the hydrogen atom

wave function ψ is complicated, being in terms of polynomial called the associated Leguerre

function. Eq. (3) can be solved only when E is positive or has one of the negative values

En (signifying that the electron is bound to the atom) specified by

En = −µz
2e4

2~2n2
, n = 1, 2, 3, . . .

This can be expressed as

En = −µz
2e4

2~2

(
1

n2

)
, (5)

the same formula for the energy levels of the hydrogen atom that Bohr obtained.

2 Solution of Radial Equation

Let us consider the bound state problem (E < 0). Eq. (3) can be written as
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+
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+

2µ

~2

(
E +

ze2

r
− ~2`(`+ 1)
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R = 0 (6)
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This gives
d2R

dr2
+

2

r

dR

dr
+

(
2µE

~2
+

2µze2

~2r
− `(`+ 1)

r2

)
R = 0 (7)

Below let’s discuss separately the methods of finding the solution of the above equation

by theoretical and numerical techniques.

2.1 Theoretical method

Let us introduce the new variables

α = −
(

8µE

~2

)1/2

, λ =
2µze2

α~2
=
ze2

~

(
− µ

2E

)1/2
.

Writing ρ = αr and dividing Eq. (7) throughout by α2, we can write it in dimensionless

form as
1

ρ2

d

dρ

(
ρ2dR
dρ

)
+

[
λ

ρ
− 1

4
− `(`+ 1)

ρ2

]
R = 0, (8)

where R(ρ) = R(r).

In the asymptotic limit, i.e, in the ρ → ∞ limit, the term −1/4 is dominant within

the square brackets. In that case, the above equation becomes

d2R
dρ2
− 1

4
R = 0,

whose physically acceptable solution becomes R(ρ) ∼ e−ρ/2. Thus we can write R(ρ) =

K(ρ)e−ρ/2, where K(ρ) is an unknown function. Further, since R(ρ) ∼ ρ` in small ρ limit,

we can write

R(ρ) = ρ`e−ρ/2L(ρ). (9)

Substituting Eq. (9) into Eq. (8), we have a differential equation for L(ρ), given by

ρ
d2L

dρ2
+ [2(`+ 1)− ρ]

dL

dρ
+ [λ− (`+ 1)]L = 0. (10)

To solve this equation, let’s assume a solution for L(ρ) in the series form:

L(ρ) = c0 + c1ρ+ c2ρ
2 + · · · =

∞∑
s=0

csρ
s.

Since we know that R(ρ) behaves like ρ` for small ρ, L(ρ) must tend to a constant as

ρ→ 0. This is why the series has been taken to start with a constant term. This gives a

recursion relation

cs+1 =
s+ `+ 1− λ

(s+ 1)(s+ 2`+ 2)
cs. (11)
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This shows that, for large s,
cs+1

cs
→ 1

s
,

which is just the ratio of successive coefficients in the expression of eρ. Thus, if the series

for L(ρ) does not terminate, then L(ρ) → constant.eρ for ρ → ∞, giving a divergent

behavior for R(ρ): R(ρ) → constant.ρleρ/2. To avoid this, we have to make the series

terminate. This can be done by choosing

λ = n = integer,

so that when s reaches the value n′ given by

n′ = n− `− 1 (12)

the factor (s+ `+ 1− λ) vanishes. Consequently, c′n+1 and all higher coefficients become

zero, and L(ρ) becomes a polynomial. The degree of the polynomial n′ must, of course, be a

non-negative integer. Hence it follws from Eq. (12) that the possible values of n = n′+`+1

are the positive integers, and that ` cannot exceed (n− 1), i.e.,

` = 0, 1, 2, . . . , (n− 1).

Thus we may tabulate the three quantum numbers n, ` and m` together with their possible

values as follows:

n = 1, 2, 3, . . . principal quantum number

` = 0, 1, 2, . . . , (n− 1) orbital quantum number

m` = 0,±1,±2, . . . ,±` magnetic quantum number (13)

Substituting λ = n, we have

En = −µz
2e4

2~2

(
1

n2

)
.

The total energy can be expressed as the sum of kinetic (T) and potential (V) energy:

E = T + V = Tradial + Torbital −
ze2

r
.

Thus, Eq. (3) can be exrpressed as

1

r2

d

dr

(
r2dR

dr

)
+

2µ

~2

(
Tradial + Torbital −

~2`(`+ 1)

2µr2

)
R = 0.

If the last two terms in the square brackets of this equation cancel each other, we shall

have a differential equation for R(r) that involves functon of the radial vector r exclusively.

We therefore require that

Torbital =
~2`(`+ 1)

2µr2
⇒ 1

2
µv2

orbital =
~2`(`+ 1)

2µr2
.
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Writting the angular momentum L = µvorbitalr, we have

L2

2µr2
=

~2`(`+ 1)

2µr2
,

giving

L =
√
`(`+ 1) ~.

It is customary to express the polynomial solution of Eq. (10) for λ = n = 1, 2, · · · in

terms of the associated Laguerre polynomials Lpq(ρ). The Laguerre polynomials are given

by

Lq(ρ) = eρ
dq

dρq
(e−ρρq) =

(
eρ
d

dρ
e−ρ
)q

ρq.

The associate Laguerre polynomials are given by

Lpq(ρ) =
dp

dρp
Lq(ρ) =

q!

(q − p)!
(−ρ−p)eρ d

q

dρq
(
e−ρρq−p

)
=

q!

(q − p)!
eρ
dq

dρq
(
e−ρρq−p

)
.

They may be defined through the generating function as

Gp(ρ, ξ) =
∞∑
q=p

Lpq(ρ)ξq

q!
=

(
− ξ

1− ξ

)p e−ρξ(1−ξ)
1− ξ

and satisfy the differential equation

ρ
d2Lpq
dρ2

+ (p+ 1− ρ)
dLpq
dρ

+ qLpq = 0.

This equation can be compared with the Eq. (10) for λ = n, giving p = 2` + 1 and

q = n − ` − 1. Thus the polynomial solution is the associated Laguerre polynomials

L2`+1
n−`−1(ρ) apart from an arbitrary constant factor Nn`. Correspondingly, R(ρ) for a given

n and ` is obtained from Eq. (9) as

Rn`(ρ) = Nn`ρ`e−ρ/2L2`+1
n−`−1(ρ), (14)

where ρ = αr = 2zr
na with a = ~2

µe2
the Bohr radius. In terms of r, the radial solution for

z = a can simply be expressed as

Rnl(r) =

√(
2

na

)3 (n− `− 1)!

2n[(n+ `)!)3]
e−r/na

(
2r

na

)`
· L2`+1

n−`−1

(
2r

na

)
. (15)

Table 1 shows some radial wave functions of hydrogen-like atoms for different orbitals.
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Table 1: The radial wave function Rn`(r) for the hydrogen-like atom

n ` Spectroscopic

notation

Rn`(r)

1 0 1s 2
(
z
a

)3/2
e−zr/a

2 0 2s 1√
2

(
z
a

)3/2 (
1− zr

2a

)
e−zr/2a

2 1 2p 1√
24

(
z
a

)5/2
e−zr/2a

3 0 3s 2
3
√

3

(
z
a

)3/2 (
1− 2zr

3a + 2z2r2

27a2

)
e−zr/3a

3 1 3p 4
27

√
2
3

(
z
a

)5/2
r
(
1− zr

6a

)
e−zr/3a

3 2 3d 4
81

1√
30

(
z
a

)7/2
r2e−zr/3a

2.2 Different Numerical method of solving radial equation

2.2.1 Using Laguerre polynomial as a special function

Using the Laguerre polynomial, we can only plot the Eigen functions given by Eq. (15).

The python code and the output are displayed below:

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm, colors

import scipy.integrate as integrate

import scipy.special as spe

def psi_R(r,n,l):

coeff = np.sqrt((2.0/n)** 3 * spe.factorial(n-l-1) /(2.0*n*spe.factorial

(n+l)** 3))

laguerre = spe.assoc_laguerre(2.0*r/n,n-l-1,2*l+1)

return coeff * np.exp(-r/n) * (2.0*r/n) **l * laguerre

r = np.linspace(0,10 ,1000)

R = psi_R(r,n=1,l=0)

plt.plot(r, R, lw=3, color=’b’, label=’$R_{nl}(r)$’)

plt.plot(r, R**2, lw=3, color=’r’, label=’$R_{nl}^2(r)$’)

plt.legend ()

plt.xlabel(’$r (units: a_0)$’,fontsize=20)

plt.ylabel(’$R_{nl}(r), R_{nl}^2(r)$’, fontsize=20)

plt.title("Hydrogen Atom , $n=1$ , $l = 0$ states")

plt.show()
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Figure 1: Plot of eigenfunction using Laguerre polynomial

2.2.2 Finite difference method

The numerical technique that we shall discuss here is the Finite Difference Discretisation.

Being an efficient approach to solve differential equations numerically, the finite difference

method approximates the differential operator by simple differences. The derivative is

simply defined in the form of a limit, given by

df(x)

dx
= lim

∆→0

[
f(x+ ∆)− f(x)

∆

]
,

where the domain of the function is discretised with some finite but infinitesimal step h.

In fact, this expression for first order derivative comes from the Taylor’s expansion of f(x)

about h, which could be expressed as

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . . .

Similarly, we can obtain

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x) + . . . .

These two expressions give

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) + . . .

Thus,

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2

For numerical computation, instead of h we are using ∆. To define the second derivative,

we need to take into account at least three points in the discretised domain. These three

7



points can be x−∆, x, and x+ ∆. Thus we can define

d2f(x)

dx2
≈ lim

∆→0

f(x+∆)−f(x)
∆ − f(x)−f(x−∆)

∆

∆
= lim

∆→0

f(x−∆)− 2f(x) + f(x+ ∆)

∆2
.

This idea of numerical technique can now be applied to solve Schrödinger equations.

As a simple example, let’s consider the problem of a particle in a box the Schrödinger

equation of which can be written as

d2ψ(x)

dx2
= −2mE

~2
ψ(x).

To solve it numerically, we need to discretise the domain (the bottom of the infinitely

deep potential well) using a regular step of size h. The desired solution is the list of values

ψ(0), ψ(∆), ψ(2∆), . . . , ψ((N + 1)∆), which we can index using an integer i. For each

of these values, we can write down an equation of the form:

d2ψi
dx2

= −2mE

~2
ψi, ∀ i ∈ {1, 2, . . . , N},

where N + 2 is the total number of points in the discretised domain. Now with the help

of the approximation for the second derivative, we can write

ψi−1 − 2ψi + ψi+1

∆2
= −2mE

~2
ψi, ∀i ∈ {1, 2, . . . , N}

This system of equations can be expressed in a concise form as a single matrix equation,

given by 

−2 1

1 −2 1

1 −2
. . .

. . .
. . . 1

. . . 1 −2





ψ1

ψ2

ψ3

...

ψN


= −2mE

~2



ψ1

ψ2

ψ3

...

ψN


.

This is nothing but an eigenvalue problem solution of which gives set of eigenvalues
2mE

~2

(representing the energy levels) and a corresponding set of eigenvectors ψ (representing

the solution).

We can now apply the above-mentioned finite difference scheme to the radial equation

of the hydrogen problem. The radial equation that we have displayed in Eq. (7) can be

expressed as
d

dr

(
r2dR

dr

)
+

2µr2

~2

(
e2

4πε0r
− `(`+ 1)~2

2µr2
+ E

)
R = 0. (16)
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Let’s define ρ = r R so that we can write the differential operator as

d

dr

(
r2 d

dr

ρ

r

)
=

d

dr

(
r
dρ

dr

)
− ρ = r

d2ρ

dr2
+
dρ

dr
− dρ

dr
= r

d2ρ

dr2
.

Thus Eq. (16) can be expressed as

r
d2ρ

dr2
− 2µr2

~2

(
e2

4πε0r
− `(`+ 1)~2

2µr2
+ E

)
ρ

r
= 0,

giving
d2ρ

dr2
+

2µ

~2

(
e2

4πε0r
− `(`+ 1)~2

2µr2
+ E

)
ρ = 0.

This can also be expressed as

− ~2

2µ

d2ρ

dr2
− e2

4πε0r
ρ+

`(`+ 1)~2

2µr2
ρ = Eρ. (17)

Eq. (17) is an eigenvalue equation, Hρ = Eρ, with

H ≡ − ~2

2µ

(
d2

dρ2
− `(`+ 1)

r2

)
− e2

4πε0r
,

where the first term is the Laplace term, second term is the angular term and the last

term is the potential term.

We can now discretise the radial coordinate using an equidistant grid ri comprising N

elements with a displacement of ∆ ≡ ri+1 − ri. The discretised Hamiltonian now consists

of three terms: the first corresponds to the Laplace operator which can be expressed as a

tridiagonal matrix:

− ~2

2µ



−2 1

1 −2 1

1 −2
. . .

. . .
. . . 1

1 −2


The other two terms result in diagonal matrices:

~2`(`+ 1)

2µ



1
r2
1

1
r2
2

. . .

1
r2
N

 and − e2

4πε0


1
r1

1
r2

. . .

1
rN


Below we provide the python codes for finding the probability density for different

values of `.
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Figure 2: Plot of eigenvalues and eigenfunctions using finite difference method

import numpy as np

from scipy import constants as const

from scipy import sparse as sparse

from scipy.sparse.linalg import eigs

from matplotlib import pyplot as plt

hbar = const.hbar

e = const.e

m_e = const.m_e

pi = const.pi

epsilon_0 = const.epsilon_0

joul_to_eV = e

def calculate_laplace_three_point(r):

h = r[1] - r[0]

main_diag = -2.0 / h** 2 * np.ones(N)

off_diag = 1.0 / h **2 * np.ones(N - 1)

laplace_term = sparse.diags([main_diag , off_diag , off_diag] ,(0, -1, 1))

return laplace_term

def calculate_angular_term(r):

angular = l * (l + 1) / r** 2

angular_term = sparse.diags (( angular))

return angular_term

def calculate_potential_term(r):

potential = e** 2 / (4.0 * pi * epsilon_0) / r

potential_term = sparse.diags (( potential))
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return potential_term

def build_hamiltonian(r):

laplace_term = calculate_laplace_three_point(r)

angular_term = calculate_angular_term(r)

potential_term = calculate_potential_term(r)

hamiltonian = -hbar **2 /(2.0 * m_e)*(laplace_term-angular_term)-

potential_term

return hamiltonian

N = 2000

l = 0

r = np.linspace(2e-9, 0.0, N, endpoint=False)

hamiltonian = build_hamiltonian(r)

’’’ solve eigenproblem ’’’

number_of_eigenvalues = 30

eigenvalues , eigenvectors = eigs(hamiltonian , k=number_of_eigenvalues ,

which=’SM’)

’’’ sort eigenvalue and eigenvectors ’’’

eigenvectors = np.array([x for _, x in sorted(zip(eigenvalues , eigenvectors

.T), key=lambda pair: pair[0])])

eigenvalues = np.sort(eigenvalues)

’’’compute probability density for each eigenvector ’’’

densities = [np.absolute(eigenvectors[i, :])** 2 for i in range(len(

eigenvalues))]

def plot(r, densities , eigenvalues):

plt.xlabel(’r ($\\ mathrm{\AA}$)’, fontsize=15)

plt.ylabel(’probability density ($\\ mathrm{\AA}^{-1}$)’, fontsize=15)

energies = [’E = {: >5.2f} eV’.format(eigenvalues[i].real / e) for i in

range(2)]

plt.plot(r * 1e+10 , densities[0], color=’blue’, linewidth=’3’, label =

energies[0])

plt.plot(r * 1e+10 , densities[1], color=’green’, linewidth=’3’, label =

energies[1])

plt.legend ()

plt.savefig(’finitediff.png’)

plt.tight_layout ()

plt.show()

return

‘‘‘ plot results ’’’

plot(r, densities , eigenvalues)
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2.3 Another method:

Eq. (17) can be expressed as

−d
2ρ

dr2
− 2µe2

4πε0~2r
ρ+

`(`+ 1)

r2
ρ =

2µE

~2
ρ.

To make r dimensionless, we can rescale it by by r′ = r
a , where a ≡ 4πε0~2

µe2
is the Bohr

radius, we have

− 1

a2

d2ρ

dr′2
− 2ρ

a2r′
+
`(`+ 1)

a2r′2
ρ =

2µE

~2
ρ.

This gives

− d
2ρ

dr′2
− 2ρ

r′
+
`(`+ 1)

r′2
ρ =

2~2(4πε0)2E

µe4
ρ.

Now defining a dimensionless energy,

E′ ≡ E
µe4

2~2(4πε0)2

=
E

13.6 eV
,

we can write the radial equation as

− d
2ρ

dr′2
− 2ρ

r′
+
`(`+ 1)

r′2
ρ = E′ρ.

Now using finite difference method, we can solve the above Eigen-value problem by dis-

cretising r as r′j = j∆. Thus the above equation can be written as

−ρj+1 + 2ρj − ρj−1

∆2
+

[
`(`+ 1)

r′2j
− 2

r′j

]
ρj = E′ρj .

The term in parentheses is nothing but an effective potential Veff. This is an eigenvalue

problem where

Hjiψi = E′ψj ,

with

Hji =


2

∆2 + Veff(r′i) for i = j

− 1
∆2 for i = j ± 1

0 otherwise

The eigenvalues give the energy of the states, and the eigenvectors are numerical approx-

imations of the wave-functions.

import numpy as np

from scipy import linalg

from scipy import constants as const

import matplotlib.pyplot as plt
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(a) (b)

Figure 3: Plot of eigenvalues, eigenfunctions, and probability density using dimensionless

form of eigenvalue equation

’’’command for figures ’’’

plt.rc(’figure ’, figsize = (6, 4))

plt.rc(’axes’, labelsize=16 , titlesize=14)

plt.rc(’figure ’, autolayout = True)

’’’ Effective potential energy function ’’’

def u(x):

return l*(l+1)/x**2 - (2/x)

N = 2000 # Number of intervals

dim = N - 1 # Number of internal points

xl = 0 # xl corresponds to origin

xr = 200.

delta = (xr-xl)/N

x = np.linspace(xl+delta ,xr-delta ,dim)

l = 0 # orbital quantum number

#Fill Hamiltonian

h = np.zeros((dim ,dim),float)

for i in range(len(h)-1):

h[i,i+1] = h[i+1,i] = -1/delta ** 2

for i in range(len(h)):

h[i,i] = 2./delta ** 2 + u(x[i])

vals , vecs = linalg.eigh(h) #Note: eigenvectors in columns of vecs

’’’Wave function ’’’

plt.figure ()
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plt.title("Hydrogen Atom , $\ell = 0$ states")

plt.xlabel("$r$ (units: $a_0$)")

plt.ylabel("$u(r)$")

plt.axhline(0, color=’black’) #draw x axis

plt.grid(True)

plt.xlim(0,40)

energies = [’E = {: >5.2f} eV’.format(13.6*vals[i].real) for i in range(3)]

for n in range(3):

y = np.transpose(vecs)[n]

plt.plot(x,y, lw=’3’, label=energies[n])

plt.legend ()

#print(’n = ’,n, ’, energy =’, energies[n])

plt.savefig(’2-dimless.png’)

plt.show()

’’’Probability Density ’’’

plt.figure ()

plt.title("Hydrogen Atom , $\ell = 0$ states")

plt.xlabel("$r$ (units: $a_0$)")

plt.ylabel("$u^2(r)$")

plt.axhline(0, color=’black’) #draw x axis

plt.grid(True)

plt.xlim(0,40)

for n in range(3):

y = np.transpose(vecs)[n]

plt.plot(x, y**2, lw=’3’, label=energies[n])

plt.legend ()

plt.show()
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